I

104

cedure for computing f(n), known from information
about the problem domain, to be a lower bound on h(n).
This selection itself induces the set { G, by (3). Never-
theless, it is convenient to proceed with our formal dis-
cussion as if {G"ﬁ} were available and as if h(n) were
explicitly calculated from (3). FFor the rest of this paper,
we assume that the algorithm A* uses (3) as the definition

of h.

B. A Consistency Assumption

When a real problem is modeled by a graph, each node
of the graph corresponds to some state in the problem
domain. Our general knowledge about, the structure of the
problem domain, together with the specific state repre-
sented by a node n, determines how the set Q,, is reduced to
the set ©,. However, we shall make one assumption
about the uniformity.of the manner in which knowledge
of the problem domain is used .to impose this reduction.

" This assumption may be stated'formally as follows. For

any nodes m and n,

inf hy(m).

0eOm

h(m,n) + inf hy(n) > (4)

0eOn .

Using the definition of & given in (3), we can restate (4)
as a kind of triangle inequality:

h(m,) + h(n) > h(m). (5)

The assumption expressed by (4) [and therefore (5)]
amounts to a type of consistency assumption on the esti-
mate h(n) over the nodes. It means that any estimate A(n)
calculated from data available in the “physical”’ situation
represented by node n alone would not be improved by
using corresponding data from the situations represented
by the other-nodes. Let us see what this assumption means
in the case of our example of cities and roads. Suppose we
decide, in this example, to use as an estimate A(n), the air-
line distance from city n to its closest goal city. As we have
stated previously, such an estimate is certainly a lower
bound on i(n). It induces at each node n a set {Gn'g} of
possible subgraphs from n by (3). If we let d(m, n) be the
airline distance between the two cities corresponding to
nodes n and m, we have h(m, n) > d(m, n) and, therefore,
by the triangle inequality for Euclidean distance

h(m, n) + h(n) > d(m, n) + h(n) > h(m),

which shows that this £ satisfies the assumption of (5).
Now let us consider for a moment the following A for the
roads-and-cities problem. Suppose the nodes of the graph
are numbered sequentially in the order in which they are
discovered. Let A for cities represented by nodes with odd-
numbered indexes be the airline distance to a preferred
goal city of these nodes, and let A = 1 for nodes with even-
numbered indexes. For the graph of Fig. 2, 7(s) = h(ny) = 8.
Nodes ny and ny are the successors of n; along ares with
costs as indicated. By the above rule for computing A,
h(n,) = 1 while A(ny) = 5. Then f(ns) = 6 + 1 = 7, while
fy) = 3 4+ 5 = 8, and algovithm A* would erroncously

S

IEEE TRANSACTIONS ON SYSTEMS SCIENCE AND CYBERNETICS, JULY 1968

"2
\
N
AN
N\
\
N
J
N\
\
6 N
N\
\
N
N\
S$=n

|O———— 0 — — — —— ——— — Be]
3 Ny 5 t

Fig. 2

choose to expand node n, next. This error occurs because

the estimates A(s) = 8 and A(ny) = 1 are inconsistent in

view of the fact that n, is only six units away from s. The

information that there cannot exist a path from s to a goal

with total cost less than eight was somehow available for

the computation of A(s), and then ignored during the com-
- putation of A(n,). The result is that (5) was violated, 1:6:;

h(s, me) + h(ns) = 6 + 1 < 8 = h(s).

For the rest of this paper, we shall assume that the
family {Gn} ‘of index sets satisfies (4) or; equivalently, the
procedures for computing the estimates & always lead to
values that satisfy (5). We shall call this assumption the
consistency assumption. Note that the estimate A(n) = 0
for all n trivially satisfies the consistency assumption.
Intuitively, the consistency assumption will generally be
satisfied by a computation rule for A that uniformly uses
measurable parameters of the problem state at all nodes;
it will generally be violated if the computation rule de-
pends upon any parameter that varies between nodes
independently of the problem state (such as a parity
count or a random variable), or if the computations at
some nodes are more elaborate than at others.

C. Proof of the Optimality of A*

The next lemma makes the important observation about
the operation of A* that, under the consistency assump-
tion, if node n is closed, then §(n) = g(n). This fact is im-
portant for two reasons. First, it is used in the proof of the
theorem about the optimality of A* to follow, and second,
it states that A* need never reopen a closed node. That is,
if A* expands a node, then the optimal path to that node
has already been found. Thus, in Step 4 of the algorithm
A*, the provision for reopening a closed node is vacuous
and may be eliminated.

Lemma 2

Suppose the consistency assumption is satisfied, and
suppose that node 7 is closed by A*. Then §(n) = ¢(n).

Proof: Consider the subgraph G, just before closing n,
and suppose the contrary, i.e., suppose §(n) > g(n). Now
there exists some optimal path P from s to n. Since G(n) >
g(n), A* did not find P. By Lemma 1, there exists an open
node n” on P with g(n') = gn’). If n/ =
proved the lemma. Otherwise,

n, we have

.

4. HART el al.: DETERMINATION OF MINIMUM COST PATHS

general, g(n') > g(n'), since the lowest cost g(n') from s
to n’ discovered at any time is certainly not lower than
the optimal cost g(n’). Thus g(r’) = g(n’), and moreover,
n’ must be open by the definition of A.

Corollary

& Suppose h(n) < h(n) for all n, and suppose A* has not
. terminated. Then, for any optimal path P from s to any
preferred goal node of s, there exists an open node n’ on P
- with f(n') < f(s).

Proof: By the lemma, there exists an open node n’ on P
with §(n’) = g(n’), so by definition of f

fn') = (') + h(n")
g(n') + h(n')
< g(n') + h(n') = f(n').

. But P is an optimal path, so fn')y = f(s) for all n’e P,
which completes the proof. We can now prove our first
" theorem.

Il

Theorem 1

If A(n) < h(n) for all n, then A* is admissible.

Proof: We prove this theorem by assuming the contrary,
namely that A* does not terminate by finding an optimal
path to a preferred goal node of s. There are three cases to
consider: either the algorithm terminates at a nongoal node,
fails to terminate at all, or terminates at a goal node with-
out achieving minimum cost.

i Case 1
Termination is at a nongoal node. This case contradicts

" the termination condition (Step 3) of the algorithm, so it
" may be eliminated immediately.

| Case 2

There is no termination. Let ¢ be a preferred goal node of
s, accessible from the start in a finite number of steps,
with associated minimum cost f(s). Since the cost on any
arc is at least 8, then for any node n further than M =
f(s)/8 steps from s, we have f(n) > g(n) > g(n) > Mé =
f(s). Clearly, no node n further than M steps from s is ever
expanded, for by the corollary to Lemma 1, there will be
some open node n’ on an optimal path such that f(n’) <
f(s) < f(n), so, by Step 2, A* will select ' instead of n.
Failure of A* to terminate could then only be caused * -
continued reopening of nodes within M steps of s. Let
x (M) be the set of nodes accessible within M steps from s,
and let »(47) be the number of nodes in x(M). Now, any
node n in x (M) can bé reopened at most a finite number of
times, say 5(n, M), since there are only a finite number of
paths from s to n passing only through nodes within 2/
steps of s. Let

o(M) = max p(n, M),
nex (M)

the maximum number of times any one node can be re-
opened. Henee, after at most »(1) (M) expansions, all

103

nodes in x (1) must be forever closed. Sinee no nodes out-
side x(M) can be expanded, A* must terminate.

Case 3

Termination is at a goal node without achieving mini-
mum cost. Suppose A* terminates at some goal node ¢
with f(£) = §(t) > f(s). But by the corollary to Lemma 1,
there existed just before termination an open node n’ on
an optimal path with f(n’) < f(s) < f(t). Thus at this
stage, n’ would have been selected for expansion rather
than ¢, contradicting the assumption that A* terminated.

The proof of Theorem 1 is now complete. In the next
section, we shall show that for a certain choice of the
function h(n), A* is not only admissible but optimal, in
the sense that no other admissible algorithm expands
fewer nodes. :

III. ON THE OPTIMALITY OF A*
A. Limitation of Subgraphs by Information from the Problem

In the preceding section, we proved that if i(x) is any
lower bound on A(n), then A* is admissible. One such
lower bound is i(n) = 0 for all n. Such an estimate amounts
to assuming that any open node n might be arbitrarily
close to a preferred goal node of n. Then the set {G,} is
unconstrained; anything is possible at node », and, in
particular, if § is a minimum at node n, then node n must
be expanded by every admissible algorithm.

Often, however, we have information from the problem
that constrains the set {G,} of possible subgraphs at each
node. In our example with cities connected by roads, no
subgraph G, is possible for which A(n) is less than the
airline distance between city n and a preferred goal city of
n. In general, if the set of possible subgraphs is con-
strained, one can find a higher lower bound of A(n) than
one can for the unconstrained situation. If this higher lower
bound is used for A(n), then A* is still admissible, but, as
will become obvious later, A* will generally expand fewer
nodes. We shall assume in this section that at each node n,
certain information is available from the physical situation
on which we can base a computation to limit the set } G}
of possible subgraphs.

Suppose we denote the set of all subgraphs from node n
by the symbol :G,W} where w indexes cach subgraph, and
w 15 in some index set Q,. Now, we presume that certain
information is available from the problem domain about
the state that node n represents; this information limits
the set of subgraphs from node n to the set {(I,,_f,} , where
0 1s in some smaller index set 0,C Q,.

IFor cach (7,4 in {("71,0} there corresponds a cost hg(n)
of the optimum path from n to a preferred goal node of n.
We shall now take as our estimate A(n), the greatest
lower bound for /ig(n). That is,

h(n) = inf hy(n). 3)
0On
We assume the infimum ix achieved for some 60,
In actual problems one probably never has an explieit

representation for 16,0 but instead one seleets o pro-

[

102

optimal path,.it will sometimes fail to find such a path and
thus not be admissible. An efficient algorithm obviously
needs some way to evaluate available nodes to determine
which one should be expanded next. Suppose some evalu-
ation function f(n) could be calculated for any node n.
We shall suggest a specific function below, but first we shall
describe how a search algorithm would use such a function.

Let our evaluation function f(n) be defined in such a
way that the available node having the smallest value of f
is the node that should be expanded next. Then we can
define a search algorithm as follows.

Search Algorithm A*:

1) Mark s “open” and calculate f(s).

2) Select the open node n whose value of f is smallest.
Resolve ties arbitrarily, but always in favor of any node
neT.

3) Ifn e T, markn “closed” and terminate the algorithm.

4) Otherwise, mark n closed and apply the successor
operator I' to n. Calculate f for each successor of n and
mark as open each successor not already marked closed.
Remark as open any closed node n; which is a successor of
n and for which f(n,) is smaller now than it was when n;,
was marked closed. Go to Step 2.

We shall next show that for a suitable choice of the
evaluation function f, the algorithm A* is guaranteed to
find an optimal path to a preferred goal node of s and thus
is admissible.

B. The Evaluation Function

For any subgraph G and any goal set T, let f(n) be the
actual cost of an optimal path constrained to go through n,
from s to a preferred goal node of n.

Note that f(s) = h(s) is the cost of an unconstrained
optimal path from s to a preferred goal node of s. In fact,
f(n) = f(s) for every node n on an optimal path, and
f(n) > f(s) for every node n not on an optimal path. Thus,
although /(n) is not known a priori (in fact, determination
of the true value of f(n) may be the main problem of inter-
est), it seems reasonable to use an estimate of f(n) as the
evaluation function f(n). In the remainder of this paper,
we shall exhibit some properties of the search algorithm A *
when the cost f(n) of an optimal path through node n is
estimated by an appropriate evaluation funetion f(n).

We can write f(n) as the sum of two parts:

J(n) = g(n) + h(n) (1)

where g(n) is the actual cost of an optimal path from s ton,
and h(n) is the actual cost of an optimal path from n to a
preferred goal node of n.

Now, if we had estimates of g and A, we could add them
to form an estimate of 1. Let g(n) be an estimate of g(n).
An obvious choice for §(n) is the cost of the path from s to
n having the smallest cost so far found by the algorithm.
Notice that this implies g(n) > g(n).

A simple example will illustrate that this estimate is
easy to caleulate as the algorithm proceeds. Consider the

IEEE TRANSACTIONS ON SYSTEMS SCIENCE AND CYBERNETICS, JULY 1968

subgraph shown in Fig. 1. It consists of a start node s and
three other nodes, n;, ny, and ns. The arcs are shown with
arrowheads and costs. Let us trace how algorithm A * pro-
ceeded in generating this subgraph. Starting with s, we
obtain successors n; and n,. The estimates §(n:) and §(n,)
are then 3 and 7, respectively. Suppose A * expands n; next
with successors n, and ns. At this stage g(ns) = 3 + 2 = 5,
and g(n.) is lowered (because a less costly path to it has
been found) to 3 4+ 3 = 6. The value of §(n;) remains
equal to 3.

Next we must have an estimate h(n) of h(n). Here we
rely on information from the problem domain. Many
problems that can be represented as a problem of finding a
minimum cost path through a graph contain some “physi-
cal” information that can be used to form the estimate .
In our example of cities connected by roads, h(n) might be
the airline distance between city n and the goal city. This
distance is the shortest possible length of any road con-
necting city » with the goal city; thus it is a lower bound on
h(n). We shall have more to say later about using informa-
tion from the problem domain to form an estimate 4, but
first we can prove that if A is any lower bound of &, then
the algorithm A * is admissible.

C. The Admissibility of A*
We shall take as our evaluation function to be used in A *
ftn) = §(n) + h(n) 2)

where §(n) is the cost of the path from s to » with minimum
cost so far found by A*, and A(n) is any estimate of the
cost, of an optimal path from n to a preferred goal node of
n. We first prove a lemma.

Lemma 1

FFor any nonclosed node n and for any optimal path P
from s to n, there exists an open node n’ on P with g(n’) =
gn’).

Proof: Let P = (s = no, my, Mo, - -+, g = n). If sis open
(that is, A* has not completed even one iteration), let
n’ = s, and the lemma is trivially true since g(s) = g(s) =
0. Suppose s is closed. Let A be the set of all closed
nodes n,; in P for which §(n;) = g(n;). A is not empty,
since by assumption s € A. Let n* be the element of A with
highest index. Clearly, n* # n, as n is nonclosed. Let n’
be the successor of n* on P. (Possibly n’ = n.) Now

g(n') < g(n*) 4+ ¢, by definition of §; g(n*) = g(n*)
because n* is in A, and g(n’) = g(n*) + c¢,« . because P
is an optimal path. Therefore, g(n’) < g(n’). But in

HART €l al.: DETERMINATION OF MINIMUM COST PATHS

the “look-ahead’’ effort in searching game trees. Procedures
developed via the heuristic approach generally have not
been able to guarantee that minimum cost solution paths
will always be found.

This paper draws together the above two approaches by
describing how information from a problem domain can
be incorporated in a formal mathematical approach to a
graph analysis problem. It also presents a general algo-
rithm which prescribes how to use such information to find
a minimum cost path through a graph. Finally, it proves,
under mild assumptions, that this algorithm is optimal in
the sense that it examines the smallest number of nodes
necessary to guarantee a minimum cost solution.

The following is a typical illustration of the sort of

' problem to which our results are applicable. Imagine a set

of cities with roads connecting certain pairs of them.
Suppose we desire a technique for discovering a sequence
of cities on the shortest route from a specified start to a

“specified goal city. Our algorithm prescribes how to use

special knowledge—e.g., the knowledge that the shortest
road route between any pair of cities cannot be less than
the airline distance between them—in order to reduce the
total number of cities that need to be considered.

First, we must make some preliminary statements and
definitions about graphs and search algorithms.

. B. Some Definitions About Graphs

A graph G is defined to be a set {n,} of elements called
nodes and a set {e,;} of directed line segments called arcs.
If e,, is an element of the set {e,;}, then we say that there
is an arc from node n, to node n, and that n, is a successor
of n,. We shall be concerned here with graphs whose arcs
have costs associated with them. We. shall represent the
cost of arc e;; by ¢;;. (An arc from n; to n; does not imply
the existence of an arc from n; to n,. If both ares exist, in
general ¢;; # c;;.) We shall consider only those graphs G
for which there exists § > 0 such that the cost of every arc
of G is greater than or equal to 8. Such graphs shall be
called 6 graphs.

In many problems of interest the graph is not specified
explicitly as a set of nodes and arcs, but rather is specified
implicitly by means of a set of source nodes SC{n,} and a
successor operator I', defined on { nz-}, whose value for each
n; is a set of pairs | (n;, cz-j)}. In other words, applying I' to
node n; yields all the successors n; of n; and the costs ¢,
associated with the arcs from n; to the various n;. Applica-
tion of T' to the source nodes, to their successors, and so
forth as long as new .odes can be generated results in an
explicit specification of the graph thus defined. We shall
assume throughout this paper that a graph G is always
given in implicit form.

The subgraph G, from any node n in {n,} is the graph
defined implicitly by the single source node n and some I
defined on {nl} We shall say that each node in G, is
accesstble from n.

A path from n, to n; 1s an ordered set of nodes (ny, n,,
.., ny) with each n;+; a suecessor of #,. There exists a path
from n; to n; if and only if n; is aceessible from n,. Ivery

101

path has a cost which is obtained by adding the individual
costs of each are, ¢;,;41, in the path. An optimal path from
n; to n; is a path having the smallest cost over the set of all
paths from n; to n;. Weshall represent this cost by h(n;.n;).

This paper will be concerned with the subgraph G, from
some single specified start node s. We define a nonempty
set T' of nodes in G as the goal nodes.! For any node n in
G, an element ¢ e 1" is a preferred goal node of n if and only
if the cost of an optimal path from n to ¢ does not exceed
the cost of any other path from n to any member of 7.
For simplicity, we shall represent the unique cost of an
optimal path from n to a preferred goal node of n by the
symbol h(n); i.e., h(n) = min h(n.t).

(e

C. Algorithms for Finding Minimum Cost Paths

We are interested in algorithms that search G, to find
an optimal path from s to a preferred goal node of s. What
we mean by searching a graph and finding an optimal path
is made clear by describing in general how such algorithms
proceed. Starting with the node s, they generate some part
of the subgraph G, by repetitive application of the suc-
cessor operator I'. During the course of the algorithm, if
I' is applied to a node, we say that the algorithm has
expanded that node.

We can keep track of the minimum cost path from s to
each node encountered as follows. Each time a node is
expanded, we storc with each successor node n both the
cost of getting to n by the lowest cost path found thus far,
and a pointer to the predecessor of n along that path.
Eventually the algorithm terminates at some goal node ¢,
and no more nodes are expanded. We can then reconstruct
a minimum cost path from s to ¢ known at the time of
termination simply by chaining back from ¢ to s through
the pointers.

We call an algorithm admissible if it is guaranteed to
find an optimal path from s to a preferred goal node of s
for any 6 graph. Various admissible algorithms may differ
both in the order in which they expand the nodes of G, and
in the number of nodes expanded. In the next section, we
shall propose a way of ordering node expansion and show
that the resulting algorithm is admissible. Then, in a fol-
lowing section, we shall show, under a mild assumption,
that this algorithm uses information from the problem
represented by the graph in an optimal way. That is, it
expands the smallest number of nodes necessary to guar-
antee finding an optimal path.

II. AN ADMISSIBLE SEARCHING ALGORI'TH)I

A. Description of the Algorithmn

In order to expand the fewest possible nodes in searching
for an optimal path, a search algorithm must constantly
make as informed a decision as possible about which node
to expand next. If it expands nodes which obviously eannot
be on an optimal path, it is wasting effort. On the other
hand, if it continues to ignore nodes that might he on an

"' We exclude the trivial case of 2 ¢ 7

100 .

151 J, E. Falk, “Lagrange multipliers and nonlinear programming,”
J. Math. Anal. Appl., vol. 19, July 1967.

6] O. L. Mangasarian and J. Ponstein, “Minimax and duality in
nonlinear programming,” J. Math. Anal. Appl., vol. 11, pp. 504~
518, 1965.

71 J. Stoer, ‘“‘Duality in nonlinear programming and the minimax
theorem,” Numerische M athematik, vol. 5, pp. 371-379, 1963.

81 R. T. Rockafellar, “Duality and stability in extremum prob-
lems involving convex functions,” Pacific .JJ. Math., vol. 21, pp.
167-187, 1967.)

5] P, Wolfe, “A duality theorem for nonlinear programming,”
Q. Appl. Math., vol. 19, pp. 239-244, 1961.

{10] R. T. Rockafellar, “Nonlinear programming,”” presented at the
American Mathematical Society Summer Seminar on the Math-
ematics of the Decision Sciences, Stanford University, Stanford,
Calif., July-August 1967.))

(111D, G. Luenberger, ‘“Convex programming and duality in
normal space,” Proc. IEEE Systems Science and Cybernetics Conf.,
(Boston, Mass., October 11-13, 1967).

(2] J. M. Danskin, “The theory of max-min with applications,”
J.SIAM, vol. 14, pp. 641-665, July 1966.]

(131 W. Fenchel, “Convex cones, sets, and functions,”” mimeo-
graphed notes, Princeton University, Princeton, N. J., September
1963.

141 R. Fletcher and M. J. D. Powell, “A rapidly convergent
descent method for minimization,” Computer J., vol. 6, p. 163, July
1963.

(151 1,. S. Lasdon and A. D. Waren, “Mathematical programming
for optimal design,”’ Electro-Technol., pp. 53-71, November 1967.

(18] J.-B. Rosen, “The gradient projection method for nonlinear :

programming, pt. I, linear constraints,” J. SIAM, vol. 8, pp. 181-
217, 1960.

IEEE TRANSACTIONS OF SYSTEMS SCIENCE AND CYBERNETICS, VOL. $sC-4, NO. 2, JULY 1968

171 R. Fletcher and C. M. Reeves, “Function minimization by
conjugate gradients,” Computer J., vol. 7, July 1964.

81D, Goldfarb, “A conjugate gradient method for nonlinear
programming,” Ph.D. dissertation, Dept. of Chem. Engrg., Prince-
ton University, Princeton, N. J., 1966.

(1L, 8. Lasdon, “A multi-level technique for optimization,”
Ph.D. dissertation, Systems Research Center, Case Institute of
Technology, Cleveland, Ohio, Rept. SRC 50-C-64-19, 1964.

(2] L. 8. Lasdon and J. D. Schoeffler, “A multi-level technique for
optimization,” Preprints, Joint Automatic Control Conf., Troy,
N. Y., June 22-25, 1965, pp. 85-92.

(21] ,'‘Decentralized plant control,” ISA Trans., vol. 5,
pp. 175-183, April 1966.

(221 C. B. Brosilow and L. S. Lasdon, “A two level optimization
technique for recycle processes,” 1966 Proc. AICHE—Symp. on
Application of Mathematical Models in Chemical Engineering Re-
search, Design, and Production (London, England).

231 .. S. Lasdon, “Duality and decomposition in mathematical
programming,”’ Systems Research Center, Case Institute of Tech-
nology, Cleveland, Ohio, Rept. SRC 119-C-67-52, 1967.

[24I'A. V. Fiacco and G. P. McCormick, Sequential Unconstrained
Minimization Technigues for Nonlinear Programming. New York:
Wiley, 1968.

(%] R. Fox and L. Schmit, “Advances in the integrated approach
to structural synthesis,” J. Spacecraft and Rockets, vol. 3, p. 858,
June 1966.

(%] B. P. Dzielinski and R. E. Gomory, “Optimal programming of
lot sizes, inventory, and labor allocations,” Management Sci., vol.
11, pp. 874-890, July 1965.

211 J. E. Falk, “A relaxed interior approach to nonlinear pro-
%r%r;xming,” Research Analysis Corp., McLean, Va. RAC-TP-279,
967. .

A Formal Basis for the Heuristic Determination
of Minimum Cost Paths

PETER E. HART, mEMBER, 1EEE, NILS J. NILSSON, MEMBER, IEEE, AND BERTRAM RAPHAEL

Abstract—Although the problem of determining the minimum
cost path through a graph arises naturally in a number of interesting
applications, there has been no underlying theory to guide the
development of efficient search procedures. Moreover, there is no
adequate conceptual framework within which the various ad hoc
search strategies proposed to date can be compared. This paper
describes how heuristic information from the problem domain can
be incorporated into a formal mathematical theory of graph searching
and demonstrates an optimality property of a class of search strate-
gies.

I. INTRODUCTION
A. The Problem of Finding Paths Through Graphs

ANY PROBLEMS of engincering and scientific
importance can be related to the general problem of
finding a path through a graph. Examples of such prob-
lems include routing of telephone traffic, navigation
through a maze, layout of printed ecircuit boards, and

Manusecript received November 24, 1967.

The authors are with the Artificial Intelligence Group of the
Applied Physics Laboratory, Stanford Research Institute, Menlo
Park, Calif.

mechanical theorem-proving and problem-solving. These
problems have usually been approached in one of two
ways, which we shall call the mathematical approach and
the heuristic approach.

1) The mathematical approach typically deals with the
properties of abstract graphs and with algorithms that
prescribe an orderly examination of nodes of a graph to
establish a minimum cost path. For example, Pollock and

~ Wiebenson!! review several algorithms which are guaran-

teed to find such a path for any graph. Busacker and
Saaty? also discuss several algorithms, one of which uses
the concept of dynamic programming.® The mathematical
approach is generally more concerned with the ultimate
achievement of solutions than it is with the computational
feasibility of the algorithms developed.

2) The heuristic approach typically uses special knowl-
edge about the domain of the problem being represented by
a graph to improve the computational efficiency of solu-
tions to particular graph-searching problems. For example,
Gelernter’s!¥ program used Euclidean diagrams to direct
the search for geometric proofs. Samuel™ and others have
used ad hoc characteristics of particular games to reduce

