’

v . HART el al.: DETERMINATION OF MINIMUM COST PATHS

It is beyond the scope of the discussion to consider how
. to define a successor operator I' or assign costs ¢,; so that
' the resulting graph realistically reflects the nature of a
! specific problem domain.?

- B. The Heuristic Power of the Estimate h

The algorithm 4 * is actually a family of algorithms; the
_choice of a particular function A selects a particular
" algorithm from the family. The function A can be used to
: - tailor A* for particular applications.
As was discussed above, the choice i = 0 corresponds to
; . the case of knowing, or at least of using, absolutely no
“information from the problem domain. In our example of
cities connected by roads, this would correspond to assum-
"ing a priori that roads could travel through “hyperspace,”
ie., that any city may be an arbitrarily small road dis-
tance from any other city regardless of their geographic
J oordinates.
.. Since we are, in fact, ‘“more informed”” about the nature
. of Euclidean space, we might increase A(n) from 0 to

V2?2 4 y? (where z and y are the magnitudes of the differ-
.ences in:the x, y coordinates of the city represented by
-node n and its closest goal city). The algorithm would
-then still find the shortest path, but would do so by ex-
. panding, typically, considerably fewer nodes. In fact,
¥ expands no more nodes?® than any admissible algorithm
hat uses no more information from the problem domain;
viz., the information that a road between two cities might
e as short as the airline distance between them.

Of course, the discussion thus far has not considered the
“cost of computing A each time a node is generated on the
. graph. It could be that the computational effort required
to compute V x* + y? is significant when compared to the
“effort involved in expanding a few extra nodes; the optimal
-procedure in the sense of minimum number of nodes ex-
panded might not be optimal in the sense of minimum
total resources expended. In this case one might, for ex-

2 We believe that appropriate choices for I' and ¢;; will permit
many of the problem domains in the heuristic programming lit-
eraturel’! to be mapped into graphs of the type treated in this paper.
This could lead to a clearer understanding of the effects of ‘“heu-
ristics”’ that use information from the problem domain.

$ Except for possible critical ties, as discussed in Corollary 2 of
Theorem 3.

107

ample, choose h(n) = (x + y)/2. Since (z + y)/2 <

x? + y?, the algorithm is still admissible. Since we are
not using “all” our knowledge of the problem domain, a
few extra nodes may be expanded, but total computational
effort may be reduced; again, each “extra” node must also
be expanded by other admissible algorithms that limit
themselves to the “knowledge” that the distance between
two cities may be as small as (z + y)/2.

Now suppose we would like to reduce our computational
effort still further, and would be satisfied with a solution
path whose cost is not necessarily minimal. Then we could
choose an i somewhat larger than the one defined by (3).
The algorithm would no longer be admissible, but it
might be more desirable, from a heuristic point of view,
than any admissible algorithm. In our roads-and-cities
example, we might let A = z + . Since road distance is
usually substantially greater than airline distance, this A
will usually, but not always, result in an optimal solution
path. Often, but not always, fewer nodes will be expanded
and less arithmetic effort required than if we used A(n) =
\/ a? + o2

Thus we see that the formulation presented uses one
function, %, to embody in a formal theory all knowledge
available .from the problem domain. The selection of A,
therefore, permits one to choose a desirable compromise
between admissibility, heuristic effectiveness, and com-
putational efficiency.

REFERENCES

[l M. Pollack and W. Wiebenson, “Solutions of the shortest-
route problem—a review,” Operations Res., vol. 8 March-April
1960.

{21 R.. Busacker and T. Saaty, Finile Graphs and Networks: An
Introduction with Applications. New York: McGraw-Hill, 1965,
ch. 3.

B R. Bellman and S. Dreyfus, Applied Dynamic Programming.
Princeton, N. J.: Princeton University Press, 1962.

4 H. Gelernter, ‘“Realization of a geometry-theorem proving
machine,” in Computers and Thought. New York: McGraw-Hill,
1963.

18] A. Samuel, “Some studies in machine learning using the game of
checkers,” in Computers and Thought. New York: McGraw-Hill,
1963.

6] E. Moore, ‘“The shortest path through a maze,”” Proc. Internat’l
Symp. on Theory of Switching (April 2-5, 1957), pt. 2. Also, The
Annals of the Computation Laboratory of Harvard University, vol. 30.
Cambridge, Mass.: Harvard University Press, 1959.

M E. Feigenbaum and J. Feldman, Computers and Thought.
New York: McGraw-Hill, 1963,




f
13
{

N\

106

The next theorem extends Theorem 2 to situations where
ties may occur. It states that for any admissible algorithm
A, one can always find a member A* of @* such that each
node expanded by A* is also expanded by A.

Theorem 3

Let A be any admissible algorithm no more informed
than the algorithms in @*, and suppose the consistency
assumption is satisfied by the A used in the algorithms in
@*. Then for any & graph G, there exists an A*e @* such
that every node expanded by A4 * is also expanded by 4.

Proof: Let G, be any 6 graph and A;* be any algorithm
in @*. If every node of G, that A,* expands is also ex-
panded by 4, let 4,* be the A* of the theorem. Otherwise,
we will show how to construct the A* of the theorem by
changing the tie-breaking rule of 4,*. Let L be the set of
nodes expanded by A, and let P = (s, nq, Na, - -+, Ny, t) be
the optimal path found by 4.

Expand nodes as prescribed by A;* as long as all nodes
selected for expansion are elements of L. Let n be the first
node selected for expansion by A,* which is not in L. Now
f(n) < f(s) by the corollary to Lemma 3. Since f(n) <
f(s) = f(t) would imply that A is inadmissible (by the
argument of Theorem 2), we may conclude that f(n) =
J(s). At the time A,* selected n, goal node ¢ was not closed
(or A;* would have been terminated). Then by the
corollary to Lemma 1, there is an open node n’ on P such
that f(n’) < f(s) = f(n). But since n was selected for ex-
pansion by A4,* instead of n’, f(n) < f(n'). Hence f(n) <
f(n') < f(n), so f(n) = f(n'). Let As* be identical to A;*
except that the tie-breaking rule is modified just enough to
choose n’ instead of n. By repeating the above argument,
we obtain for some ¢ an A,*¢ @* that expands only nodes
that are also expanded by A, completing the proof of the
theorem.

Corollary 1

Suppose the premises of the theorem are satisfied. Then
for any 6 graph @ there exists an A*e @* such that N(4%*,
G,) < N(4, G,), with equality if and only if A expands the
identical set of nodes as A *.

Since we cannot select the most fortuitous tie-breaking
rule ahead of time for each graph, it is of interest to ask
how all members of @* compare against any admissible
algorithm 4 in the number of nodes expanded. Let us
define a critical tie between n and n’ as one for which
f(n) = f(n") = f(s). Then we have the following as a second
corollary to Theorem 3.

Corollary 2

Suppose the premises of the theorem are satisfied. Let
R(A*, () be the number of critical ties which occurred in
the course of applyving A* to G;. Then for any 6 graph G,
and any A*e@*,

N(A* G,) < N4, G) + R(A* G,).

IEEE TRANSACTIONS ON SYSTEMS SCIENCE AND CYBERNETICS, JULY 1968

Proof: For any noncritical tie, all alternative nodes must
be expanded by A as well as by A* or A would not be
admissible. Therefore, we need merely observe that each
node expanded by A* but not by A must correspond to a
different critical tie in which A*'s tie-breaking rule made
the inappropriate choice.

Of course, one must remember that when A does expand
fewer nodes than some particular A* in @%*, it is only be-
cause A was in some sense ‘“lucky’” for the graph being
searched, and that there exists a graph consistent with the
information available to 4 and A* for which A * would not
search more nodes than A.

Note that, although one cannot keep a running estimate
of R while the algorithm proceeds because one does not
know the value of f(s), this value is established as soon as
the algorithm terminates, and R can then be easily com-
puted. In most practical situations, R is not likely to be
large because critical ties are likely to occur only very
close to termination of the algorithm, when A can become a
perfect estimator of A.

IV. DiscussioN AND CONCLUSIONS
A. Comparisons Between A* and Other Search Techniques

Earlier we mentioned that the estimate A(n) = 0 for all

~n trivially satisfies the consistency assumption. In this

case, f(n) = §(n), the lowest cost so far discovered to node
n. Such an estimate is appropriate when no information at
all is available from the problem domain. In this case, an
admissible algorithm cannot rule out the possibility that
the goal might be as close as § to that node with minimum
g(n). Pollack and Wiebenson!!! discuss an algorithm, pro-
posed to them by Minty in a private communication, that
is essentially identical to our A* using f(n) = §(n).

Many algorithms, such as Moore’s “Algorithm D”'1®
and Busacker and Saaty’s implementation of dynamic
programming, keep track of §(n) but do not use it to
order the expansion of nodes. The nodes are expanded in a
“breadth-first” order, meaning that all nodes one step
away from the start are expanded first, then all nodes two
steps away, etc. Such methods must allow for changes in
the value of §(n) as a node previously expanded is later
reached again by a less costly route.

It might be argued that the algorithms of Moore,
Busacker and Saaty, and other equivalent algorithms
(sometimes known as “water flow”’” or “amoeba’ algo-
rithms) are advantageous because they first encounter the
goal by a path with a minimum number of steps. This
argument merely reflects an imprecise formulation of the
problem, since it implies that the number of steps, and not
the cost of each step, is the quantity to be minimized.
Indeed, if we set ¢;; = 1 for all arcs, this class of algorithms
is identical to A* with A = 0. We emphasize that, as is
always the case when a mathematical model is used to
represent a real problem, the first responsibility of the in-
vestigator is to ensure that the model is an adequate
representation of the problem for his purposes.



TR

(s

HART el al.: DETERMINATION OF MINIMUM COST PATHS

g(n) = g(n') + h(n',n)

g(n’) + h(n',n).

Il

. Thus,
- §(n) > G0') + h(n',n).
Adding A(n) to both sides yields

g(n) + h(n) > §(n') + h(n',n) + h(n).

We can apply (5) to the right-hand side of the above in-
equality to yield

§m) + hw) > g + A(w')

f(n) > f(n'),

contladlctlng the fact; that' A* selected n for. expansion
when n’ was available and thus proving ‘the lemma.

The next lemma states that f is monotonically nonde-
creasing on the sequence of nodes closed by A*.

Lemma 3
Let (m1, ma, - - -, m,) be the sequence of nodes closed by
‘A¥. Then, if the con51stency assumption lS satlsﬁed P < q:
1xf1pllesf (np) <7J (na) e
‘Proof: Let n be the next node closed by A* after closmg
m. Suppose first that the optimum path to n does not go
through m. Then n was available at the time m:was
selected, and the lemma is trivially true. Then suppose that
the optimum path to n does, in fact, go through m. Then
g(n) = g(m) + h(m,n). Since, by Lemma 2, we have
. §(n) = g(n) and §(m) = g(m),

i

‘

o) + h(n)
g(n) + hin)
g(m)i+ hm, n) + h(n)
g(m) + him)

g(m) + h(m)

I

>

=i where the inequality fc lows byrapplication of (o) Thus we
have

) > fam).

Since this fact is true for any pair of nodes 7 and 7,41 in
the sequence, the proof is complete.

Corollary

Under the premises of the lemma, if n is closed then
Jny < 5(s)- ,

Proof: Let t be the goal node found by A*. Then f(n) <
J@O = @) = fs)-

We can now prove a theorem about the optimality of A*
as compared with any other admissible algorithm A that

=

105

uses no more information about the problem than does 4*.
Let 6,4 be the index set used by algorithm A at node n.
Then, if 0,4 € 0, for all nodes n in G, we shall say that
algorithm A is no more informed than algorithm A*.

The next theorem states that if an admissible algorithm
4 is no more informed than A *, then any node expanded by
A* must also be expanded by 4. We prove this theorem
for the special case for which ties never occur in the value
of fused by A*. Later we shall generalize the theorem to
cover the case where ties can occur, but the proof of the no-
ties theorem is so transparent that we include it for clarity.

Theorem 2

Let A be any admissible algorithm no more informed
than 4*. Let G; be any & graph such that n > m implies
f(n) # f(m), and let the consistency assumption be satis-
fied by the h used in A*. Then if node n was exp«mded by

. A¥ it'was also expanded by A

Proof: Suppose the contrary. Then there exists some
node n expanded by A* but not by 4. Let t* and ¢ be the
preferred goal nodes of s found by A* and 4, respectively.

‘Since A* and A ‘are both admissible,

f@*) = g + h(t*) = g(t*) + 0 = J(t*) = 7(t) = f(s).

Since A* must have expanded n before closing t*, by
Lemma 3 we have

fy <@ = 1)

* (Strict inequality occurs because no ties are allowed.)

There exists some graph G4 0 € 0,, for which A(n) =
h(n) by the definition of . Now by Lemma 2, j(n) = g(n).
Then on the graph G4, f(n) = f(n). Since 4 is no more
informed than A*, A could not rule out the existence of
G but A did not expand n before termination and is,
therefore, not admissible, contrary to our assumption and
completing the proof.

Upon defining N (4,(;) to be the total number of nodes
in G, expanded by the algorithm 4, the following simple
corollary is immediate.

Corollary
Under the premises of Theorem 2,

N(A*, () < N(4; Gy)

with equality if and only if 4 expands the identical set of
nodes as A *.

In this sense, we claim that A* is an optimal algorithm.
Compared with other more informed admissible
algorithms, it expands the fewest possible nodes necessary
to guarantee finding an optimal path.

In case of ties, that is if there exist two or more open
nodes ny, -+ -, 0, with f(m) = -+ = f(n) < f(n) for every
other open node n, A* arbitrarily chooses one of the n,.
Consider the set @* of all algorithms that act identically to
A* if there are no ties, but whose members resolve ties
differently. An algorithm ix a member of @* if it is simply
the original A* with any arbitrary tie-breaking rule.

no




