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Abstract. Admissibility is a desired property of heuristic evalua- heuristics behave much better under these same conditions. An intu-
tion functions, because when these heuristics are used with compleité&ve explanation for this phenomenon is given. Section 3 compares
search methods, such as A* and RBFS, they guarantee that an opfgiairs of heuristic functions of equal quality, one optimistic, the other
mal solution will be found. Since every optimistic heuristic function pessimistic, and demonstrates that the latter give much better results
is admissible, optimistic functions are widely used. We show, how-when used with RTA* search in the 8-puzzle domain. Section 4 dis-
ever, that with incomplete, real-time search, optimistic functions losecusses some consequences of this finding. Section 5 concludes the
their appeal, and in fact they may hinder the search under quite regaper and gives some pointers for further work.
sonable conditions. Under these conditions the exact opposite is to
be preferred, i.e. pessimistic heuristic functions that naneeresti- 2 OPTIMISTIC AND PESSIMISTIC
matethe difficulty of the problem. We demonstrate that such heuris- HEURISTICS
tics behave better than optimistic ones of equal quality on a standard
testbed using RTA* search method. Let RTA* evaluate node: with an evaluation functiorf of the com-
mon form f(n) = g(n) + h(n). Hereg(n) is the cost of the path
from the current node to node andh(n) is a heuristic estimate of
1 INTRODUCTION the cost of an optimal path from nodeto the nearest goal node.
Let us denote the true cost of such an optimal path from modéh

Admissibility is a desired property of heuristic evaluation functions, " ) : -
because when these heuristics are used with complete search me{h-(n)' The relationship be‘.Wee” the_true and heuristic value of node
n is governed by the following equation:

ods, such as A* [6] and RBFS [8], they guarantee that an optimal so-
lution will be found. A known theorem about the admissibility states h(n) = h*(n) + e(n) (1)
that a heuristic function, which always gives an optimistic assess-

ment of the position, is admissible [6]. This theorem made optimisticwheree(n) is an error the heuristic makes at nade

heuristic functions popular and widely used. The main problems with Suppose the current state has two successors, nodes b, a
complete search methods, though, are their exponential running timeeing better thah. The immediate task of the search is to choose
and the necessity to wait until the search completes before the firdtetween node and node. RTA* will choosea if f(a) < f(b). We
step towards the goal can be taken. To alleviate these problems, imvill simplify the analysis slightly by assuming without loss that all
complete search methods have been proposed, such as RTA* [the edges have unit cost. Then the conditign) < f(b) for choos-
Since these methods can tackle much larger problems, they can oftémy « is equivalent to the conditioh(a) < h(b). If this condition

be the only practical option. holds then RTA* will make the correct decision (i.e. choa$eoth-

Incomplete search methods do not guarantee finding an optimarwise it will commit a decision error by choosiibgSo a decision
solution even when used in conjunction with admissible heuristicserror occurs when
Thus, the main reason for using admissible and consequently opti- h(a) > h(b). )
mistic heuristics is void. Nevertheless, people use optimistic heuristi
functions with incomplete search methods, because: (a) they are of-
ten readily available, since they were developed for complete search h*(a) + e(a) > h*(b) + e(b). (3)
algorithms, (b) common sense saying that since they proved useful
with complete search methods, perhaps they are useful with inconfSincea is better tharb, h*(a) < h*(b), and the differencéh* =
plete search methods as well, and (c) it was never shown that they"(b) — h*(a) is positive. The condition for decision error can be
could be counterproductive. stated as:

In this paper we show that under very reasonable conditions, op- e(a) —e(b) > AR™ > 0. 4)
timistic functions are (.:ounterproduct.ivg in real-'Fime (incomplete) Now let us consider what happens in two special cases: (1) when
;earch. Our results indicate that pessimistic functions should be usqge algorithm uses aaptimistic heuristic function, and (2) when it
instead. uses apessimisticheuristic function. By definition, for optimistic

Section 2 of the paper derives the condition under which opti\oistics, heuristic errors are always negative because heuristic
mistic heuristics harm real-time search. It also shows that pess'm'St'ﬁpproximations underestimate true costs. So for optimistic heuris-
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his can be rewritten in terms of true coétsSand heuristic errors:




T problem, the heuristic will on the average make a larger error in it.
average heuristic error This is represented in the figure with a longer tail coming out of node
for positions of given difficulty b than the one coming out of node Furthermore, if the heuristic
is optimistic, only downward part of the tail is possible, and vice
versa, if the heuristic is pessimistic only the upward part of the tail
) . is possible. If the heuristic is optimistic, the longer tail, coming out
difference in of nodeb has to overcome the difference in true values to give a
a true values chance for a decision error to be committed. However, if the heuris-
""""""""""""" tic is pessimistic, it is the shorter tail coming out of nadéhat has
to overcome the difference in true values. Since the longer tail can
more easily overcome this difference than the shorter tail, it follows
that the optimistic heuristic can more easily commit a decision error
distance to when the heuristic’s errors increase with increasing difficulty of the

closest goal problems.

3 EXPERIMENTS

We have tested our theoretical results on a classical testbed for single-

agent search methods, the 8-puzzle sliding tiles problem, described

e.g. in [2]. We have chosen this small puzzle, because for complete

evaluation of success of search we needed to know the true value of

Figure 1. The difference in true values every state in the domain — the reason for this will become apparent
in the next subsection.

3.1 The two heuristic functions
Equation 5 has an interesting consequence. It basically says that if . ) o )
the heuristic function’s absolute error increases with increasing dif-© €MPirically test our theoretical findings, we compared two heuris-

ficulty of the problems (nodes requiring more costly paths to reacﬁic functions, one optimistic, the other pessimistic. The functions

the goal), then for optimistic heuristics the chance to make a deci®eded to be of equal quality (in terms of their relative errors), so

sion errorincreasesin our example, nod&is more difficult than,  that neither one of them has an unfair advantage. To get such a pair
so under this assumption, absolute heuristic errontl tend to be  ©f functions, we had to artificially construct them. -
greater than at. This indicates a problem with optimistic heuristics Ve first calculated the true values of all legal 8-puzzle positions

when heuristic errors (in absolute terms) increase with the difficultyVith the use of retrograde analysis, a technique known from com-

of the problems. Conversely, if heuristic errors decrease with the difPUter chess, where itis used to generate endgame databases [13]. An

ficulty of the problems, then the optimistic heuristic will have better Ndexed array of distances to nearest goal defines the perfect evalu-
chance of making correct decisions. However, as also discussed la

t{g‘,p'on functionh™. Then we proceeded to generate the two heuristic

in the paper, this second case (heuristic error decreasing with thfé‘”Ct'Ons by approprlr?\tel_y cqrruptlng our per_fegt heur|_st|_cs.

cost) seems to be rather unrealistic in practice. We modelled the distribution of our optimistic heuristic after the
For pessimistic heuristics, by definition heuristic errerare al-

distribution of Manhattan distance heuristic — a well-known op-
ways positive, and the condition for RTA* making a decision error imistic heuristic for the 8-puzzle domain. On average, Manhattan
is: distance heuristic’s error increases with increasing difficulty of the
* problems (the average error over all positions of a given difficulty

le(a)] = le(®)] > AR™ > 0. © level). We measure the difficulty of the problem as the number of
If we compare Equations 5 and 6, we can see that just the opposite sfeps needed to reach the goal assuming optimal play, i.e. with the
what is true for optimistic heuristics holds for pessimistic heuristics.problem’s true value. The dispersion of heuristic values around the
Pessimistic heuristics have better chances to produce correct de@verage evaluation for a given difficulty level is more or less constant.
sion if the heuristic error increases with increasing difficulty of the We created our artificial heuristics by corrupting the perfect evalu-
nodes, and worse if the heuristic error decreases with increasing diftions in a controlled manner. Our method of doing this is as follows.
ficulty of the nodes. According to this, in the case of absolute erroMWe take a position’s true valug® (n) and add to it a certain amount
increasing with difficulty, i.e. the case to be expected more likely inof Gaussian noise, described with the formula:
practice, optimistic heuristics will tend to make decision errors more

o . 1 C(z—p)2 2
frequently than pessimistic heuristics. P(z) = ——e (®=1)7/(207) 7
A @) = e @
2.1 Intuitive explanation The formula gives the probability(R)dz that given the correct eval-

uationu = h*(n) and standard deviatian, the heuristic evaluation,
Figure 1 shows a decision task we discussed. The tails stemminl(n) = = € R, will take on a value in the range;,  + dz]. The
from nodes: andb represent the average heuristic error for the prob-error of heuristic evaluatioh(n) ise(n) = z — u. We do this for all
lems of given difficulty. To commit a decision error, the heuristic legal positions. A more detailed description of this process is given in
values have to overcome the difference in true values between tHa1]. Parametes controls the level of corruption. Since we modelled
two nodes. Suppose the heuristic’s errors increase with increasingur heuristics after the Manhattan heuristic, we chose 2.5 steps
difficulty of the problems. Since noderepresents a more difficult to equal the standard deviation of Manhattan heuristic’s evaluations.



Eval uati on the calculated evaluations. We repeated the process for other depths.

52 A more detailed description of the procedure is given in [11].
48
44
40 3.3 Results
36
32 We were interested in two characteristics: the percentage of correct
28 decisions each of our heuristics makes when used in conjunction with
24 RTA* search and the actual solution length such a search produces.
20
16 o
12 3.3.1 Percentage of correct decisions
8 . . .
4 When measuring the percentage of correct decisions we varied the

difficulty of the problems to be solved and the depth of lookahead.
2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 For a given difficulty level of problems and a given depth of looka-
head, we measured the average percentage of correct decisialhs on
possible puzzles of this level where one path is clearly better from the
others (otherwise there is nothing to decide between).

The results of the experiments are presented in Figure 3. The x-
axis represents the depth of lookahead, and the y-axis represents the
percentage of correct decisions made. Figure 3 shows a representa-
o o o ) tive subset of the results. The chart on the left represents moderately

To get the optimistic heuristic, we multiplied the obtained cor- yticyt puzzles, the middle one hard puzzles, and the right chart rep-
rupted heuristic by a constart resents a random mixture of 1,000 puzzles of various difficulties —

_ * this way of testing is quite common and was used for example in

hln) = - (h(n) +e(n)). ® [3, 7]. The first two charts do not represent a single puzzle, but rather
We chose: = 2/3 to emulate the level of errors Manhattan heuris- all puzzles of the given difficulty.
tic commits. The pessimistic heuristic of comparable relative error It is obvious from the charts that the pessimistic heuristic, repre-
was obtained by multiplying the corrupted heuristic by inverted con-Sented by a dashed line, gives rise to a higher average percentage of
stantl /¢, that is with3 /2. The random process of corrupting the true correct decisions than the optimistic heuristic for all difficulty lev-
evaluations was of course repeated for the pessimistic heuristic (w@ls of the puzzles. This is especially so when the lookahead depth is
did not use the same errors as with the optimistic heuristic). If somé&lose to the difficulty level of puzzles.
evaluations in either heuristic were not pessimistic or optimistic as One may argue that perhaps the constant 3/2 used to get
intended, their values were corrupted again. the pessimistic heuristic is misguided, and that 4/3 should be

Both heuristics are plotted in Figure 2. The x-axis gives the diffi-used instead. The latter gives the same level of errors in absolute
culty (true value) of the position, the y-axis gives the heuristic eval-terms, while the first one gives the same relative errors. We indeed
uation of the position. The crosses represent the optimistic heuristi€&onstructed such a pessimistic heuristic as well, and the results were,
the circles the pessimistic heuristic, and the solid line represents th@s expected, even more in favour of the pessimistic heuristic.
true evaluations. A random sample of 50 positions of each difficulty
is displayed. Tht_a figure_cle_arly shc_>ws tha_lt the average heuristic erof 3 5 golution length
grows close to linear with increasing difficulty of positions for both
heuristics. When measuring the solution length we varied the depth of looka-

The first seven levels of difficulty deserve an explanation. Forhead and the quality of heuristics used (by varying the parameter
these levels we did not corrupt the true evaluations, we just mulfor the pair of heuristic functions). The results are presented in Figure
tiplied them with the appropriate constant. The reason for this ist. The x-axis again represents the depth of lookahead, and the y-axis
that few positions belong to these levels and it is therefore practirepresents the solution length. The results are averaged over all legal
cally impossible to corrupt them so that they would maintain morepuzzles. The dotted line at 21.50 represents the length of optimum
or less constant dispersion. Thus, we once again decided to modgblution averaged over all legal puzzles. The left chart represents the
after the Manhattan distance heuristic, which also without exceptiorcase folo = 2.5 (the pair of heuristics modelled after the Manhattan
gives correct estimates for the first seven levels of difficulty. heuristic), while the other two charts represent the cases with larger
heuristic errorsg = 3 ando = 4, respectively.

We can see that pessimistic heuristics (dashed line) clearly outper-
form their optimistic counterparts (solid line) by consistently find-
We varied the depth of RTA* lookahead from 1 to 30, thirty being theing shorter solutions. It is interesting that after the depth of looka-
difficulty of the hardest 8-puzzle problems. We were able to reacthead reaches 5 moves, the gain in solution length (thick line) is quite
these very high depths of lookahead by employing transposition taconstant. At very high search depths the gain of course decreases,
bles — yet another technique known from computer chess. We tookventually reaching zero, because more and more puzzles are solved
advantage of the comparatively small number of possible positionsptimally since the solution is seen directly from the starting state.
in the 8-puzzle domain. We calculated depth 1 lookahead evalua- The gain in solution length for the pessimistic heuristic over its
tions for all positions and stored these values in an array. Then weptimistic counterpart, modelled by Manhattan heuristic, is about 5%
calculated depth 2 evaluations for all positions by doing one ply ofto 10% (on the interesting interval with lookahead depth over 5 and
search and using previously stored depth 1 evaluations, again storirmgefore too many solutions are directly found). The decreasing quality

Figure 2. The evaluations given by our heuristic functions

3.2 The search engine
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Figure 3. The comparison of correct decisions made between optimistic (solid line) and pessimistic (dashed line) heuristic
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Figure 4. The comparison of solution length between optimistic (solid line) and pessimistic (dashed line) heuristic; the thick line represents the difference
between them (the gain by pessimistic heuristic)

of heuristics, however, causes a sharp increase in the gaia. £@ rise to an important question: which is more plausible, increasing
the gain is slightly below 20% and for = 4 it is already about 50%. or decreasing heuristic errors? We believe that the majority of real-
life heuristics belong to the first group, namely that their heuristic
errors increase with increasing difficulty of the problems. For exam-
3.4 Search depth pathology ple, imagine a task scheduling problem and a heuristic for it. If the
A search depth pathology is a phenomenon when deeper lookaheSQ@timal solutionis that the tasks complete in, say, 10 hours, itis easy
results in more decision errors committed or worse solutions found!© imagine & heuristic estimating this time as somewhere between
This pathology was first discovered in two-player games in the lat& @nd 12 hours, that is committing an error-62 hours. However,
1970s [1, 9]. An overview is given in [10, 11]. Recently, such pathol-'f the optimal solution is that the tasks complete in 1,000 hours, it
ogy has also been detected in single-agent search [3, 5]. As we cd$ duite unimaginable that the heuristic would estimate this time as
see from the charts in Figures 3 and 4 our artificial heuristics als$oMeéwhere between 998 and 1,002 hours. That would be an incredi-
display such pathological behaviour. However, it is interesting thaply_accurate heurlstlc. Itis much more likely that the heuristic would
the pessimistic heuristic displays lesser inclination towards such beEStimate the time needed as something between 800 and 1,200 hours,
haviour than its optimistic counterpart. As we can see the pathologEommitting the error of=200 hours. We believe it is quite conceiv-
ical behaviour is not limited only to decision quality but also man- able that the error'ls_uguallplatlveto the size/difficulty of the prob-
ifests itself in solution length. This was also observed by Korf [7]. 16m; that the heuristic is, say, 20% off the mark. However, the equa-
With lower quality of heuristics the optimistic ones become morelions in Section 2 only need this error to increase in absolute terms, it
and more pathological while the pessimistic ones behave normall;f.joes not matter that the heuristic is more or less equally wrong in rel-
This deserves further study. ative terms. From this we conclude that pessimistic heuristics seem to
be preferable. We can give one more example: to which group do the
two well-known heuristics for the 8-puzzle belong? Both, Manhattan
4 DISCUSSION distance and “Manhattan distance + Sequence score” heuristics, de-

) ) o scribed e.g. in [2], belong to the first group — their error rises with
We have shown that if the error committed by the heuristic evalua;

L . on . ““increasing difficulty of the problems.
tion increases with the difficulty of the problems, pessimistic heuris- 5 possible argument in favour of optimistic heuristics could be

tics are comparatively more successful than optimistic ones of equg}, ¢ they may be easier to construct than pessimistic ones. But is
quality, and vice versa, if the heuristic error decreases with the dlffl-this really s0? Probably it is just that people are more used to opti-

culty of the problems, then optimistic heuristics are better. This gives



mistic heuristics since they were usually preferred. For example, iminimum heuristic value will tend to be thmost distortecamong

is trivial to use air distance as a heuristic when approximating thehe values close to optimal, because minimin will tend to return the

road distance between two cities. But it is similarly trivial to use as amost underestimated node value close to optimal.

heuristic the distance based solely on highways, not on all the roads.

This h_eurls_tlc is pe_ssnmlstlc. Another pow_nghoul_d be noted here. Th% CONCLUSIONS AND FURTHER WORK

equations in Section 2 do not say that it is strictly necessary for &

heuristic to be pessimistic f@averyposition, just for most of them. We have shown that pessimistic heuristic functions are more effective

This, on the other hand, is not the case with the admissibility theothan their optimistic counterparts of equal quality when used with

rem — it necessitates thatl positions are optimistically evaluated incomplete search methods under the condition that the heuristic’s

for the heuristic to be admissible. errors grow with increasing difficulty of the problems. We have ar-
The difference in the decision accuracy between the two heurisgued that such a condition is often met in practice, and that therefore

tic functions in our experiments is a few percent, unless the searchessimistic heuristics should be preferred.

reaches the vicinity of goal nodes, where this difference increases. We have also mentioned that our preconditions do not strictly ne-

How much are these few percent worth? Not so little, because theessitate that the heuristic is pessimistic for every single node. We

search makes a series of decisions and for every single one of thebelieve it would be worthwhile to study how the percentage of such

the pessimistic heuristic gives it an extra few percent. For exampleyiolations of pessimistic evaluation affect the gain.

in the 8-puzzle domain, each mistake means the search will have to The experiments also indicated that while both heuristic functions

make at least two additional steps — one going back to the positiodisplay some pathological behaviour, the pessimistic heuristics seem

where it came from, the other taking the right path (which it couldless inclined to do so. Why is this so is an interesting topic for further

have taken in the first place if it would not make a mistake).
Suppose we have an optimistic heuristic for some problem, e.g.,

work.

the Manhattan distance for the 8-puzzle. We could make it peSACKNOWLEDGEMENTS
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