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Abstract. Admissibility is a desired property of heuristic evalua-
tion functions, because when these heuristics are used with complete
search methods, such as A* and RBFS, they guarantee that an opti-
mal solution will be found. Since every optimistic heuristic function
is admissible, optimistic functions are widely used. We show, how-
ever, that with incomplete, real-time search, optimistic functions lose
their appeal, and in fact they may hinder the search under quite rea-
sonable conditions. Under these conditions the exact opposite is to
be preferred, i.e. pessimistic heuristic functions that neverunderesti-
matethe difficulty of the problem. We demonstrate that such heuris-
tics behave better than optimistic ones of equal quality on a standard
testbed using RTA* search method.

1 INTRODUCTION

Admissibility is a desired property of heuristic evaluation functions,
because when these heuristics are used with complete search meth-
ods, such as A* [6] and RBFS [8], they guarantee that an optimal so-
lution will be found. A known theorem about the admissibility states
that a heuristic function, which always gives an optimistic assess-
ment of the position, is admissible [6]. This theorem made optimistic
heuristic functions popular and widely used. The main problems with
complete search methods, though, are their exponential running time
and the necessity to wait until the search completes before the first
step towards the goal can be taken. To alleviate these problems, in-
complete search methods have been proposed, such as RTA* [7].
Since these methods can tackle much larger problems, they can often
be the only practical option.

Incomplete search methods do not guarantee finding an optimal
solution even when used in conjunction with admissible heuristics.
Thus, the main reason for using admissible and consequently opti-
mistic heuristics is void. Nevertheless, people use optimistic heuristic
functions with incomplete search methods, because: (a) they are of-
ten readily available, since they were developed for complete search
algorithms, (b) common sense saying that since they proved useful
with complete search methods, perhaps they are useful with incom-
plete search methods as well, and (c) it was never shown that they
could be counterproductive.

In this paper we show that under very reasonable conditions, op-
timistic functions are counterproductive in real-time (incomplete)
search. Our results indicate that pessimistic functions should be used
instead.

Section 2 of the paper derives the condition under which opti-
mistic heuristics harm real-time search. It also shows that pessimistic
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heuristics behave much better under these same conditions. An intu-
itive explanation for this phenomenon is given. Section 3 compares
pairs of heuristic functions of equal quality, one optimistic, the other
pessimistic, and demonstrates that the latter give much better results
when used with RTA* search in the 8-puzzle domain. Section 4 dis-
cusses some consequences of this finding. Section 5 concludes the
paper and gives some pointers for further work.

2 OPTIMISTIC AND PESSIMISTIC
HEURISTICS

Let RTA* evaluate noden with an evaluation functionf of the com-
mon formf(n) = g(n) + h(n). Hereg(n) is the cost of the path
from the current node to noden, andh(n) is a heuristic estimate of
the cost of an optimal path from noden to the nearest goal node.
Let us denote the true cost of such an optimal path from noden with
h∗(n). The relationship between the true and heuristic value of node
n is governed by the following equation:

h(n) = h∗(n) + e(n) (1)

wheree(n) is an error the heuristic makes at noden.
Suppose the current state has two successors, nodesa and b, a

being better thanb. The immediate task of the search is to choose
between nodea and nodeb. RTA* will choosea if f(a) < f(b). We
will simplify the analysis slightly by assuming without loss that all
the edges have unit cost. Then the conditionf(a) < f(b) for choos-
ing a is equivalent to the conditionh(a) < h(b). If this condition
holds then RTA* will make the correct decision (i.e. choosea), oth-
erwise it will commit a decision error by choosingb. So a decision
error occurs when

h(a) > h(b). (2)

This can be rewritten in terms of true costsh∗ and heuristic errorse:

h∗(a) + e(a) > h∗(b) + e(b). (3)

Sincea is better thanb, h∗(a) < h∗(b), and the difference∆h∗ =
h∗(b) − h∗(a) is positive. The condition for decision error can be
stated as:

e(a)− e(b) > ∆h∗ > 0. (4)

Now let us consider what happens in two special cases: (1) when
the algorithm uses anoptimisticheuristic function, and (2) when it
uses apessimisticheuristic function. By definition, for optimistic
heuristics, heuristic errorse are always negative because heuristic
approximations underestimate true costs. So for optimistic heuris-
tics, for all nodesn, e(n) = −|e(n)|. The decision error condition
then becomes:

|e(b)| − |e(a)| > ∆h∗ > 0. (5)
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Figure 1. The difference in true values

Equation 5 has an interesting consequence. It basically says that if
the heuristic function’s absolute error increases with increasing dif-
ficulty of the problems (nodes requiring more costly paths to reach
the goal), then for optimistic heuristics the chance to make a deci-
sion errorincreases. In our example, nodeb is more difficult thana,
so under this assumption, absolute heuristic error atb will tend to be
greater than ata. This indicates a problem with optimistic heuristics
when heuristic errors (in absolute terms) increase with the difficulty
of the problems. Conversely, if heuristic errors decrease with the dif-
ficulty of the problems, then the optimistic heuristic will have better
chance of making correct decisions. However, as also discussed later
in the paper, this second case (heuristic error decreasing with the
cost) seems to be rather unrealistic in practice.

For pessimistic heuristics, by definition heuristic errorse are al-
ways positive, and the condition for RTA* making a decision error
is:

|e(a)| − |e(b)| > ∆h∗ > 0. (6)

If we compare Equations 5 and 6, we can see that just the opposite of
what is true for optimistic heuristics holds for pessimistic heuristics.
Pessimistic heuristics have better chances to produce correct deci-
sion if the heuristic error increases with increasing difficulty of the
nodes, and worse if the heuristic error decreases with increasing dif-
ficulty of the nodes. According to this, in the case of absolute error
increasing with difficulty, i.e. the case to be expected more likely in
practice, optimistic heuristics will tend to make decision errors more
frequently than pessimistic heuristics.

2.1 Intuitive explanation

Figure 1 shows a decision task we discussed. The tails stemming
from nodesa andb represent the average heuristic error for the prob-
lems of given difficulty. To commit a decision error, the heuristic
values have to overcome the difference in true values between the
two nodes. Suppose the heuristic’s errors increase with increasing
difficulty of the problems. Since nodeb represents a more difficult

problem, the heuristic will on the average make a larger error in it.
This is represented in the figure with a longer tail coming out of node
b than the one coming out of nodea. Furthermore, if the heuristic
is optimistic, only downward part of the tail is possible, and vice
versa, if the heuristic is pessimistic only the upward part of the tail
is possible. If the heuristic is optimistic, the longer tail, coming out
of nodeb has to overcome the difference in true values to give a
chance for a decision error to be committed. However, if the heuris-
tic is pessimistic, it is the shorter tail coming out of nodea that has
to overcome the difference in true values. Since the longer tail can
more easily overcome this difference than the shorter tail, it follows
that the optimistic heuristic can more easily commit a decision error
when the heuristic’s errors increase with increasing difficulty of the
problems.

3 EXPERIMENTS

We have tested our theoretical results on a classical testbed for single-
agent search methods, the 8-puzzle sliding tiles problem, described
e.g. in [2]. We have chosen this small puzzle, because for complete
evaluation of success of search we needed to know the true value of
every state in the domain — the reason for this will become apparent
in the next subsection.

3.1 The two heuristic functions

To empirically test our theoretical findings, we compared two heuris-
tic functions, one optimistic, the other pessimistic. The functions
needed to be of equal quality (in terms of their relative errors), so
that neither one of them has an unfair advantage. To get such a pair
of functions, we had to artificially construct them.

We first calculated the true values of all legal 8-puzzle positions
with the use of retrograde analysis, a technique known from com-
puter chess, where it is used to generate endgame databases [13]. An
indexed array of distances to nearest goal defines the perfect evalu-
ation functionh∗. Then we proceeded to generate the two heuristic
functions by appropriately corrupting our perfect heuristics.

We modelled the distribution of our optimistic heuristic after the
distribution of Manhattan distance heuristic — a well-known op-
timistic heuristic for the 8-puzzle domain. On average, Manhattan
distance heuristic’s error increases with increasing difficulty of the
problems (the average error over all positions of a given difficulty
level). We measure the difficulty of the problem as the number of
steps needed to reach the goal assuming optimal play, i.e. with the
problem’s true value. The dispersion of heuristic values around the
average evaluation for a given difficulty level is more or less constant.

We created our artificial heuristics by corrupting the perfect evalu-
ations in a controlled manner. Our method of doing this is as follows.
We take a position’s true valueh∗(n) and add to it a certain amount
of Gaussian noise, described with the formula:

P(x) =
1

σ
√

2π
e−(x−µ)2/(2σ2). (7)

The formula gives the probability P(x)dx that given the correct eval-
uationµ = h∗(n) and standard deviationσ, the heuristic evaluation,
h(n) = x ∈ R, will take on a value in the range[x, x + dx]. The
error of heuristic evaluationh(n) is e(n) = x−µ. We do this for all
legal positions. A more detailed description of this process is given in
[11]. Parameterσ controls the level of corruption. Since we modelled
our heuristics after the Manhattan heuristic, we choseσ = 2.5 steps
to equal the standard deviation of Manhattan heuristic’s evaluations.
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Figure 2. The evaluations given by our heuristic functions

To get the optimistic heuristic, we multiplied the obtained cor-
rupted heuristic by a constantc:

h(n) = c · (h∗(n) + e(n)) . (8)

We chosec = 2/3 to emulate the level of errors Manhattan heuris-
tic commits. The pessimistic heuristic of comparable relative error
was obtained by multiplying the corrupted heuristic by inverted con-
stant1/c, that is with3/2. The random process of corrupting the true
evaluations was of course repeated for the pessimistic heuristic (we
did not use the same errors as with the optimistic heuristic). If some
evaluations in either heuristic were not pessimistic or optimistic as
intended, their values were corrupted again.

Both heuristics are plotted in Figure 2. The x-axis gives the diffi-
culty (true value) of the position, the y-axis gives the heuristic eval-
uation of the position. The crosses represent the optimistic heuristic,
the circles the pessimistic heuristic, and the solid line represents the
true evaluations. A random sample of 50 positions of each difficulty
is displayed. The figure clearly shows that the average heuristic error
grows close to linear with increasing difficulty of positions for both
heuristics.

The first seven levels of difficulty deserve an explanation. For
these levels we did not corrupt the true evaluations, we just mul-
tiplied them with the appropriate constant. The reason for this is
that few positions belong to these levels and it is therefore practi-
cally impossible to corrupt them so that they would maintain more
or less constant dispersion. Thus, we once again decided to model
after the Manhattan distance heuristic, which also without exception
gives correct estimates for the first seven levels of difficulty.

3.2 The search engine

We varied the depth of RTA* lookahead from 1 to 30, thirty being the
difficulty of the hardest 8-puzzle problems. We were able to reach
these very high depths of lookahead by employing transposition ta-
bles — yet another technique known from computer chess. We took
advantage of the comparatively small number of possible positions
in the 8-puzzle domain. We calculated depth 1 lookahead evalua-
tions for all positions and stored these values in an array. Then we
calculated depth 2 evaluations for all positions by doing one ply of
search and using previously stored depth 1 evaluations, again storing

the calculated evaluations. We repeated the process for other depths.
A more detailed description of the procedure is given in [11].

3.3 Results

We were interested in two characteristics: the percentage of correct
decisions each of our heuristics makes when used in conjunction with
RTA* search and the actual solution length such a search produces.

3.3.1 Percentage of correct decisions

When measuring the percentage of correct decisions we varied the
difficulty of the problems to be solved and the depth of lookahead.
For a given difficulty level of problems and a given depth of looka-
head, we measured the average percentage of correct decisions onall
possible puzzles of this level where one path is clearly better from the
others (otherwise there is nothing to decide between).

The results of the experiments are presented in Figure 3. The x-
axis represents the depth of lookahead, and the y-axis represents the
percentage of correct decisions made. Figure 3 shows a representa-
tive subset of the results. The chart on the left represents moderately
difficult puzzles, the middle one hard puzzles, and the right chart rep-
resents a random mixture of 1,000 puzzles of various difficulties —
this way of testing is quite common and was used for example in
[3, 7]. The first two charts do not represent a single puzzle, but rather
all puzzles of the given difficulty.

It is obvious from the charts that the pessimistic heuristic, repre-
sented by a dashed line, gives rise to a higher average percentage of
correct decisions than the optimistic heuristic for all difficulty lev-
els of the puzzles. This is especially so when the lookahead depth is
close to the difficulty level of puzzles.

One may argue that perhaps the constantc = 3/2 used to get
the pessimistic heuristic is misguided, and thatc = 4/3 should be
used instead. The latter gives the same level of errors in absolute
terms, while the first one gives the same relative errors. We indeed
constructed such a pessimistic heuristic as well, and the results were,
as expected, even more in favour of the pessimistic heuristic.

3.3.2 Solution length

When measuring the solution length we varied the depth of looka-
head and the quality of heuristics used (by varying the parameterσ
for the pair of heuristic functions). The results are presented in Figure
4. The x-axis again represents the depth of lookahead, and the y-axis
represents the solution length. The results are averaged over all legal
puzzles. The dotted line at 21.50 represents the length of optimum
solution averaged over all legal puzzles. The left chart represents the
case forσ = 2.5 (the pair of heuristics modelled after the Manhattan
heuristic), while the other two charts represent the cases with larger
heuristic errors,σ = 3 andσ = 4, respectively.

We can see that pessimistic heuristics (dashed line) clearly outper-
form their optimistic counterparts (solid line) by consistently find-
ing shorter solutions. It is interesting that after the depth of looka-
head reaches 5 moves, the gain in solution length (thick line) is quite
constant. At very high search depths the gain of course decreases,
eventually reaching zero, because more and more puzzles are solved
optimally since the solution is seen directly from the starting state.

The gain in solution length for the pessimistic heuristic over its
optimistic counterpart, modelled by Manhattan heuristic, is about 5%
to 10% (on the interesting interval with lookahead depth over 5 and
before too many solutions are directly found). The decreasing quality
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Figure 3. The comparison of correct decisions made between optimistic (solid line) and pessimistic (dashed line) heuristic
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Figure 4. The comparison of solution length between optimistic (solid line) and pessimistic (dashed line) heuristic; the thick line represents the difference
between them (the gain by pessimistic heuristic)

of heuristics, however, causes a sharp increase in the gain. Forσ = 3
the gain is slightly below 20% and forσ = 4 it is already about 50%.

3.4 Search depth pathology

A search depth pathology is a phenomenon when deeper lookahead
results in more decision errors committed or worse solutions found.
This pathology was first discovered in two-player games in the late
1970s [1, 9]. An overview is given in [10, 11]. Recently, such pathol-
ogy has also been detected in single-agent search [3, 5]. As we can
see from the charts in Figures 3 and 4 our artificial heuristics also
display such pathological behaviour. However, it is interesting that
the pessimistic heuristic displays lesser inclination towards such be-
haviour than its optimistic counterpart. As we can see the patholog-
ical behaviour is not limited only to decision quality but also man-
ifests itself in solution length. This was also observed by Korf [7].
With lower quality of heuristics the optimistic ones become more
and more pathological while the pessimistic ones behave normally.
This deserves further study.

4 DISCUSSION

We have shown that if the error committed by the heuristic evalua-
tion increases with the difficulty of the problems, pessimistic heuris-
tics are comparatively more successful than optimistic ones of equal
quality, and vice versa, if the heuristic error decreases with the diffi-
culty of the problems, then optimistic heuristics are better. This gives

rise to an important question: which is more plausible, increasing
or decreasing heuristic errors? We believe that the majority of real-
life heuristics belong to the first group, namely that their heuristic
errors increase with increasing difficulty of the problems. For exam-
ple, imagine a task scheduling problem and a heuristic for it. If the
optimal solution is that the tasks complete in, say, 10 hours, it is easy
to imagine a heuristic estimating this time as somewhere between
8 and 12 hours, that is committing an error of±2 hours. However,
if the optimal solution is that the tasks complete in 1,000 hours, it
is quite unimaginable that the heuristic would estimate this time as
somewhere between 998 and 1,002 hours. That would be an incredi-
bly accurate heuristic. It is much more likely that the heuristic would
estimate the time needed as something between 800 and 1,200 hours,
committing the error of±200 hours. We believe it is quite conceiv-
able that the error is usuallyrelativeto the size/difficulty of the prob-
lem; that the heuristic is, say, 20% off the mark. However, the equa-
tions in Section 2 only need this error to increase in absolute terms, it
does not matter that the heuristic is more or less equally wrong in rel-
ative terms. From this we conclude that pessimistic heuristics seem to
be preferable. We can give one more example: to which group do the
two well-known heuristics for the 8-puzzle belong? Both, Manhattan
distance and “Manhattan distance + Sequence score” heuristics, de-
scribed e.g. in [2], belong to the first group — their error rises with
increasing difficulty of the problems.

A possible argument in favour of optimistic heuristics could be
that they may be easier to construct than pessimistic ones. But is
this really so? Probably it is just that people are more used to opti-



mistic heuristics since they were usually preferred. For example, it
is trivial to use air distance as a heuristic when approximating the
road distance between two cities. But it is similarly trivial to use as a
heuristic the distance based solely on highways, not on all the roads.
This heuristic is pessimistic. Another point should be noted here. The
equations in Section 2 do not say that it is strictly necessary for a
heuristic to be pessimistic foreveryposition, just for most of them.
This, on the other hand, is not the case with the admissibility theo-
rem — it necessitates thatall positions are optimistically evaluated
for the heuristic to be admissible.

The difference in the decision accuracy between the two heuris-
tic functions in our experiments is a few percent, unless the search
reaches the vicinity of goal nodes, where this difference increases.
How much are these few percent worth? Not so little, because the
search makes a series of decisions and for every single one of them
the pessimistic heuristic gives it an extra few percent. For example,
in the 8-puzzle domain, each mistake means the search will have to
make at least two additional steps — one going back to the position
where it came from, the other taking the right path (which it could
have taken in the first place if it would not make a mistake).

Suppose we have an optimistic heuristic for some problem, e.g.,
the Manhattan distance for the 8-puzzle. We could make it pes-
simistic by adding a constant to it. Unfortunately this approach does
not work, because by doing so the new heuristic’s error would actu-
ally increase with decreasing problem difficulty, so all we would do is
transform one disadvantageous case into another. How about multi-
plying an optimistic heuristic by a constant to get a pessimistic one?2

This approach might actually work, though not for every heuristic. In
some cases, like with Manhattan distance, we could again get a pes-
simistic heuristic whose error again increases with decreasing diffi-
culty of the problems. But for some heuristics we could succeed. But
even in this case we would have to experiment with finding the right
constant, since if the constant is too big, we degrade the heuristic too
much, and if the constant is too small, the resulting heuristic might
not be pessimistic.

In section 2, we showed that RTA* using optimistic heuristics
is likely to make more decision errors than RTA* with pessimistic
heuristics. A related question is how the fixed-depth lookahead per-
formed by RTA* affects the accuracy of heuristic evaluations. When
RTA* decides which node to move to next, it considers the minimin
backed-up heuristic values rather than the original, “static” heuristic
values. The relevant question is: Are these backed-up heuristic values
more accurate than the static heuristic estimates themselves? We will
here indicate, without full mathematical proof, the intuition behind
the following answer: Minimin backed-up heuristic values have on
average smaller absolute error when the terminal nodes of lookahead
are evaluated by pessimistic heuristics than when they are evaluated
optimistically. Of course in all detail this depends on the distribution
of true values and on error distribution. It is however easy to see the
advantage of pessimistic heuristics in the cases when there are sev-
eral lookahead terminal nodes all of which having true values close
to the lowest true value. Minimin lookahead will return the minimum
heuristic value encountered at the fringe of the lookahead. In the case
of pessimistic heuristics, this minimum heuristic value will tend to be
theleast distortedamong the true values close to optimal. This is be-
cause minimin will tend to return the least overestimated node close
to optimal. On the contrary, in the case of optimistic heuristics, this

2 Both, adding a constant or multiplying with a constant is used in the
weighted LRTA* algorithm [4, 12]. However, while the purpose there is
to allow somestates to be evaluated pessimistically, here we would likeall
states to be evaluated pessimistically.

minimum heuristic value will tend to be themost distortedamong
the values close to optimal, because minimin will tend to return the
most underestimated node value close to optimal.

5 CONCLUSIONS AND FURTHER WORK

We have shown that pessimistic heuristic functions are more effective
than their optimistic counterparts of equal quality when used with
incomplete search methods under the condition that the heuristic’s
errors grow with increasing difficulty of the problems. We have ar-
gued that such a condition is often met in practice, and that therefore
pessimistic heuristics should be preferred.

We have also mentioned that our preconditions do not strictly ne-
cessitate that the heuristic is pessimistic for every single node. We
believe it would be worthwhile to study how the percentage of such
violations of pessimistic evaluation affect the gain.

The experiments also indicated that while both heuristic functions
display some pathological behaviour, the pessimistic heuristics seem
less inclined to do so. Why is this so is an interesting topic for further
work.
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